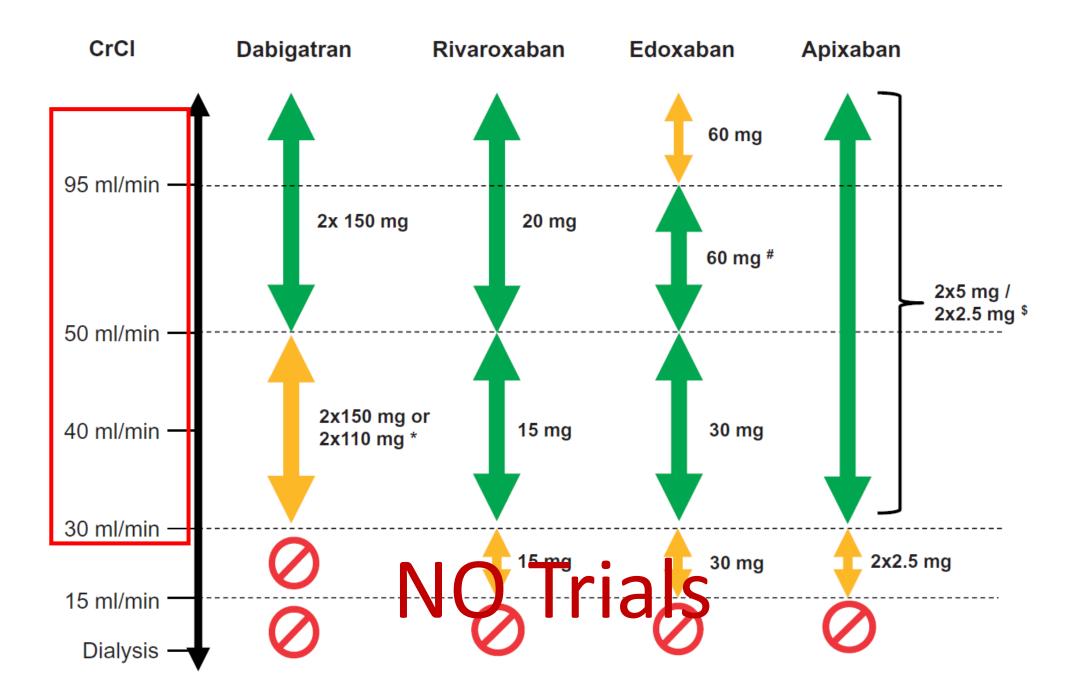
Best available evidence regarding the DOAC use in patients with *End-Stage Renal Disease*

Parham Sadeghipour, MD

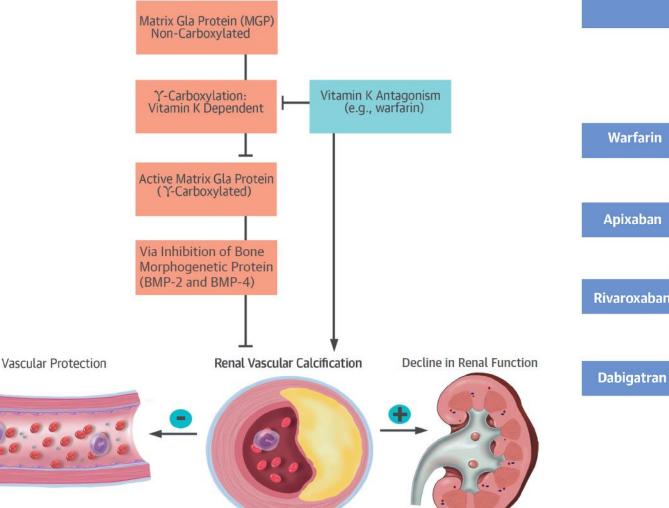
Rajaie Cardiovascular Medical and Research Center

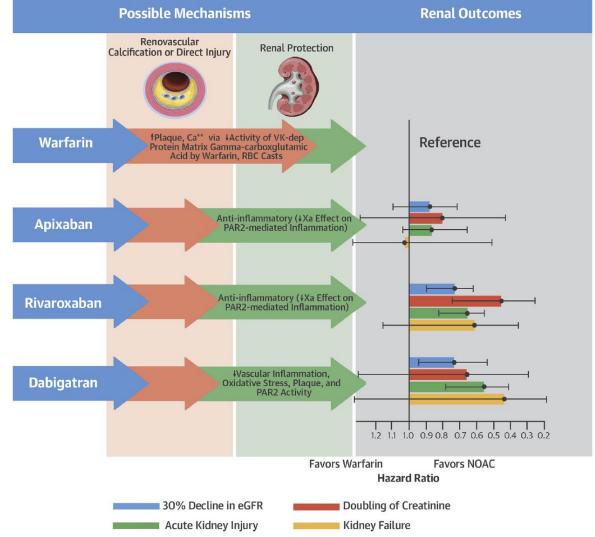
Disclosures

- Consultancy for Abidi, Actover, Arena, Bayer and Boehringer Ingelheim
- Research funding from Abidi, Actover, Arena, Bayer and Boehringer Ingelheim
- Advisory committee or board of ELAQUIT (Abidi), XARELTO (Bayer)

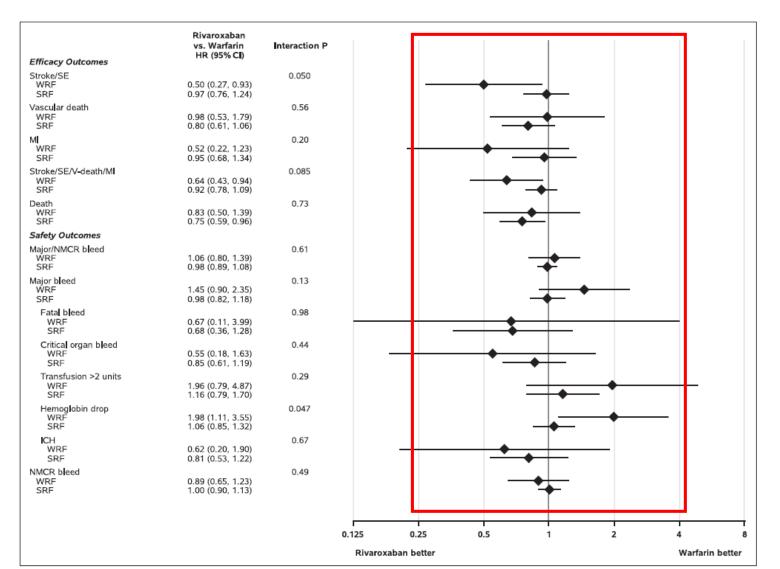

	Stroke/Systemic Embolism HR (95% CI)	Bleeding HR (95% CI)
Off-Label <u>UNDER-</u> dose	22% 1.22 (1.05-1.42)	<u>No difference</u> 0.95 (0.82-1.11)
Off-Label <u>OVER-</u> dose	26% 1.26 (1.11-1.43)	30% 1.30 (1.04-1.62)

DOAC trough RCT


	Dabiga (RE-L) 150 mg BID		Apixaban (ARISTOTLE ^{4,5}) 5/2.5 mg BID	Rivaroxaban (ROCKET AF ⁶) 20/15 mg OD	Edoxaban (ENGAGE AF-TIMI 48 ⁷) 60/30 mg OD
Stroke/SE	4 35%	Similar	21%	Similar	Similar
Ischemic stroke	4 24%	Similar	Similar	Similar	Similar
CV mortality	4 15%	Similar	Similar	Similar	14%
Major bleeding	Similar	20%	4 31%	Similar	20%
ЮН	₽ 70%	59%	58%	33%	53%


DOAC trough **RCT**

	Dabigatran (RE-LY)	Rivaroxaban (ROCKET-AF)	Apixaban (ARISTOTLE)	Edoxaban (ENGAGE AF-TIMI 48)
Number of patients	18,113	14,264	18,201	21,105
Dose	150 mg or 110 mg twice daily	20 mg once daily	5 mg twice daily	60 mg or 30 mg once daily
Moderate CKD Definition (CrCl)	31-49 mL/min	25-50 mL/min	30–49 mL/min	30-50 mL/min
Dose adjustment for moderate CKD	75 mg twice daily	15 mg once daily	2.5 mg twice daily	30 mg once daily
Number of patients with moderate CKD	3554 (20%)	2950 (21%)	3017 (17%)	2740 (19.5%)
Exclusion criteria based on CrCl	<30 mL/min	< 30 mL/min	Serum Cr > 2.5 mg/dL or CrCl <25 mL/min	<30 mL/min
Primary efficacy outcome: stroke and SE vs. warfarin (HR, 95% CI)	150 mg: 0.56 (0.37–0.85) 110 mg: 0.85 (0.59–1.24)	0.84 (0.57–1.23)	0.79 (0.55–1.14)	0.87 (0.64–1.19)
Primary safety outcome: major bleeding (HR, 95% CI)	150 mg: 1.02 (0.79–1.30) 110 mg: 0.99 (0.77–1.28)	0.95 (0.72–1.26)	0.5 (0.38–0.66)	0.76 (0.58–0.98)


Renal monitoring in patients taking anticoagulation

On-Treatment Outcomes in Patients With Worsening Renal Function With Rivaroxaban Compared With Warfarin

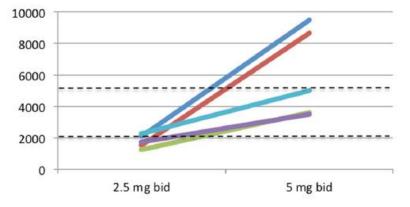
Insights From ROCKET AF

Efficacy of apixaban when compared with warfarin in relation to renal function in patien with atrial fibrillation: insights from the ARISTOTLE trial

		Apixaban	Warfarin	Hazard Ratio		P-value
		%/year (n)	%/year (n)	(95% CI)		for Interaction
	Cockcroft-(Gault eGFR mL/n	nin			0.705
-	>80	0.99 (70)	1.12 (79)	0.88 (0.64, 1.22)		
s ne	>50-80	1.24 (87)	1.69 (116)	0.74 (0.56, 0.97)		
Soli	≤50	2.11 (54)	2.67 (69)	0.79 (0.55, 1.14)		
in the	CKD-EPI eGi					0.406
ic v	>80	1.16 (56)	1.33 (63)	0.87 (0.61, 1.25)		
em	>50-80	1.31 (123)	1.59 (149)	0.83 (0.65, 1.05)		
eff	≤50	1.30 (33)	2.13 (53)	0.61 (0.39, 0.94)		
Primary efficacy outcome (Stroke ⁽ Systemic embolism)	Cystatin C e	GFR mL/min				0.098
ě ž	>80	0.9 (73)	1.38 (100)	0.72 (0.53, 0.97)	_	
Pr (St	>50-80	1.65 (81)	1.52 (76)	1.08 (0.79, 1.48)		-
	≤50	1.41 (27)	2.19 (40)	0.64 (0.39, 1.05)		
		ault eGFR mL/m				0.627
	>80	2.33 (169)	2.71 (195)	0.86 (0.70, 1.06)		
	>50-80	3.41 (244)	3.56 (251)	0.96 (0.81, 1.14)		
1 A	≤50	7.12 (188)	8.30 (221)	0.86 (0.70, 1.05)		100 C
tal	CKD-EPI eG					0.319
JOL	>80	2.82 (139)	3.11 (151)	0.91 (0.72, 1.14)		
e u	>50-80	3.26 (312)	3.42 (327)	0.95 (0.82, 1.11)		
aus	≤50	5.83 152()	7.48 (191)	0.78 (0.63, 0.96)		
All-cause mortality	Cystatin C e	GFR mL/min				0.706
A	>80	2.20 (165)	2.53 (188)	0.87 (0.71, 1.07)		
	>50-80	4.14 (208)	4.50 (230)	0.92 (0.76, 1.11)		
	≤50	7.19 (142)	7.21 (135)	1.00 (0.79, 1.26)		
	Cockcroft C	ault cro i i				0.030
	>80	ault eGFR mL/m		0.90/0.61 1.04)	-	0.030
	>50-80	1.46 (96) 2.45 (157)	1.84 (119) 3.21 (199)	0.80 (0.61, 1.04) 0.77 (0.62, 0.94)		
	≥50-80 ≤50	3.21 (73)	6.44 (142)	0.50 (0.38, 0.66)		
б	CKD-EPI eGi		0.44 (142)	0.50 (0.58, 0.00)	-	0.004
Major bleeding	>80	1.42 (64)	2.30 (100)	0.62 (0.45, 0.85)		0.001
lee	>50-80	2.21 (190)	2.58 (219)	0.86 (0.71, 1.04)		
or b	≤50	3.28 (73)	6.78 (143)	0.48 (0.37, 0.64)		
lajo	Cystatin C e		0.10 (110)	0.10 (0.07, 0.0 1)	-	0.775
2	>80	1.45 (99)	2.19 (146)	0.66 (0.51, 0.86)		0.775
	>50-80	2.67 (120)	3.62 (162)	0.74 (0.58, 0.93)		
	≤50	3.56 (60)	5.47 (85)	0.65 (0.47, 0.91)		
				0.25	0.5 1	2

	CrCl 15-29 ml/min	AHA/ACC/HRS (2019) (5)	Adjusted dose INR 2-3	75 mg BID	5.0 or 2.5 mg BID*	15 mg QD	Not recommended
		CHEST Guideline (2018) (4)	Adjusted dose TTR >70%	75 mg BID (U.S. only) Not recommended outside U.S.	2.5 mg BID	15 mg QD	30 mg QD
		KDIGO (2018)† (2)	Consider adjusted dose INR 2-3	Unknown (consider 75 mg BID)	Consider 2.5 mg BID	Consider 15 mg QD	Consider 30 mg QID
		EHRA practical guide (2018) (3)	Not discussed	Not recommended	2.5 mg BID	15 mg QD	30 mg QD
		ESC (2016) (1)	Adjusted dose INR 2-3	Not recommended	Not recommended if CrCl <25	Not recommended	Not recommended
$\left(\right)$	CrCl <15 ml/min (Dialysis)	AHA/ACC/HRS (2019) (5)	Adjusted dose INR 2-3	Not recommended	5.0 or 2.5 mg BID*	Not recommended	Not recommended
		CHEST guideline (2018) (4)	Adjusted dose TTR >70%	Not recommended	5 mg BID‡	Not recommended	Not recommended
		KDIGO (2018)† (2)	Equipoise	Not recommended	Consider 2.5 mg BID	Unknown (15 mg QD mentioned)	Not recommended
		EHRA practical guide (2018) (3)	Not discussed	Not recommended	Not recommended	Not recommended	Not recommended
		ESC (2016) (1)	Not discussed	Not recommended	Not recommended	Not recommended	Not discussed

		Dabigatran	Apixaban	Rivaroxaban	Edoxaban
CrCl 15-30 ml/min	FDA	75 mg BID	5 or 2.5 mg BID*	15 mg QD	30 mg QD
	EMA	Contraindicated	2.5 mg BID	Limited clinical data —15 mg QD	30 mg QD
CrCl < 15 ml/min	FDA	Not approved	5 mg BID	Limited clinical data—15 mg QD	Not approved
	EMA	Contraindicated	Contraindicated	Contraindicated	Contraindicated
Dialysis	FDA	Not approved	5 mg BID	Limited clinical data—15 mg QD	Not approved
	EMA	Contraindicated	Contraindicated	Contraindicated	Contraindicated


1. Do we have solid evidence for the efficacy and safety of DOAC in ESRD patients with AF?

Apixaban Pharmacokinetics at Steady State in Hemodialysis Patients

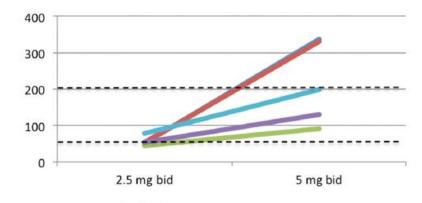
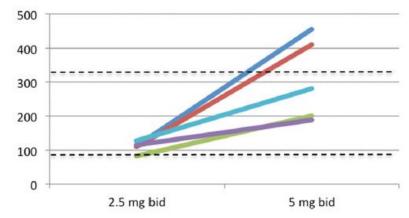


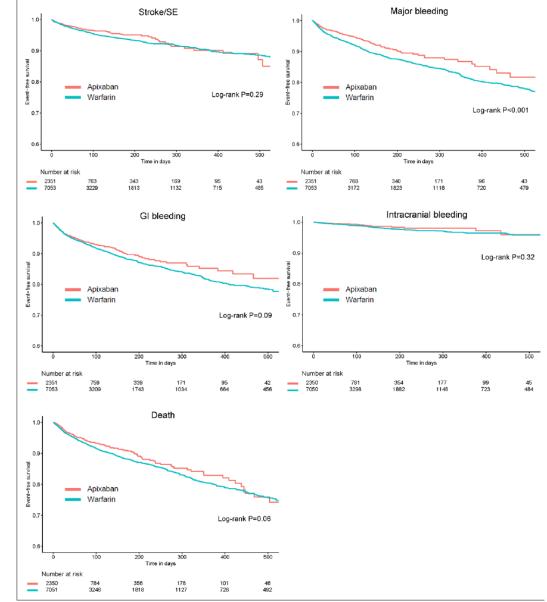
 Table 2. PK parameters of apixaban after administration of 5 mg twice daily for a week and comparison with expected levels in the general population

Apixaban 5 mg Twice Daily	Day 22	P Value	Reference Levels (for the 5 mg twice daily dose)
AUC ₀₋₁₂ , ng h/ml	3026.6±46.6% [2770.4]	0.03	[1474–1717] ¹⁸
AUC ₀₋₂₄ , ng h/ml	6053.2±46.6% (3505.5-9469.7)	0.03	3370 (2070-5250)19
C _{max} , ng/ml	307.0±39.4% (189.0-455.0)	0.02	171 (91–321) ^{a20}
t _{max,} , h	3.8±35.6% (2.5-6.0)	0.89	_
C _{min} , ng/ml	217.5±51.9% (91.0-337.4)	0.03	107 (56–203) ¹⁹
t _{1/2} , h	17.4±51.3% (7.1–29.8)	0.13	_

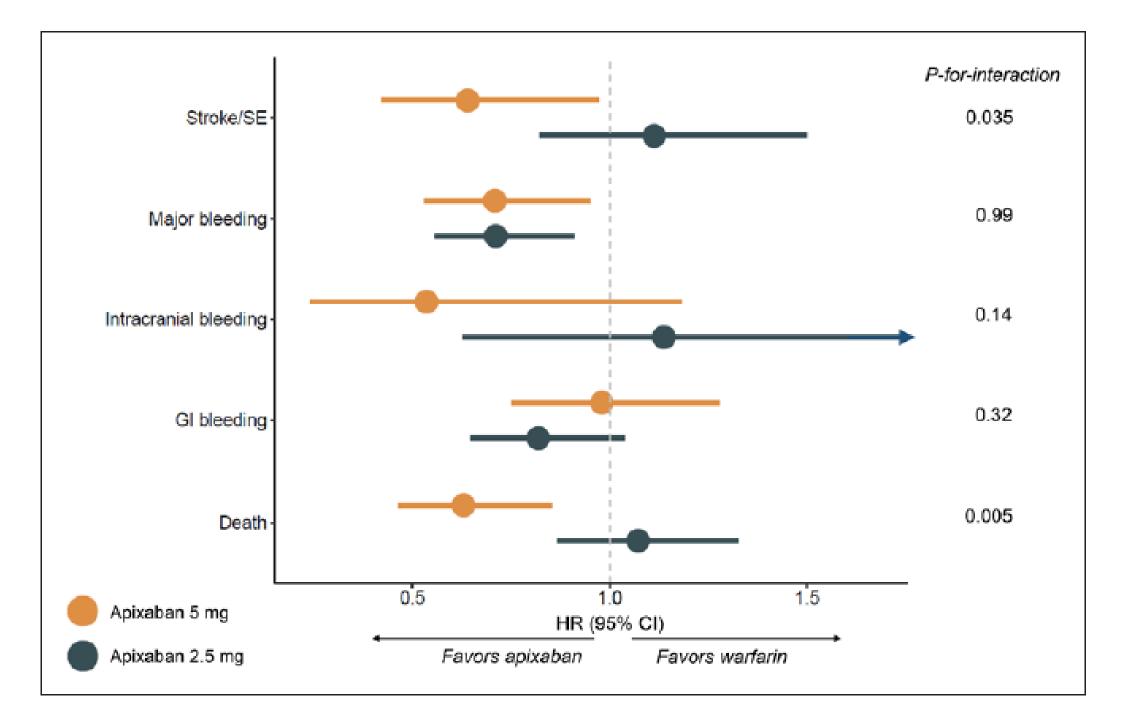

This table shows the PK parameters of apixaban 5 mg twice daily at steady state (day 8). Results are presented as mean \pm coefficient of variation (range), median (10th–90th percentile), or median (5th–95th percentile). For AUC₀₋₁₂, the geometric mean (in brackets) is also depicted. *P* values are comparing apixaban 5 mg twice daily (day 22) with apixaban 2.5 mg twice daily at steady state (day 8; data depicted in Table 1, column 3). t_{max}, Time to peak apixaban concentration. ^aMedian (5th–95th percentile). AUCss (ng.h/ml) with 2.5 and 5 mg bid

Trough levels (ng/ml) with 2.5 and 5 mg bid

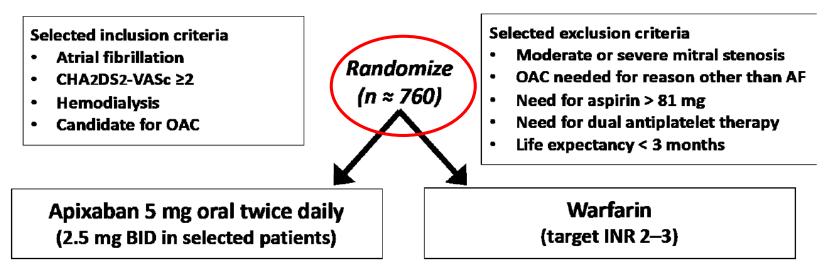
Peak levels (ng/ml) with 2.5 and 5 mg bid


Limitations of *pharmacokinetics* study

- •Small sample sizes
- Ideal patients with few comorbidities


ORIGINAL RESEARCH ARTICLE

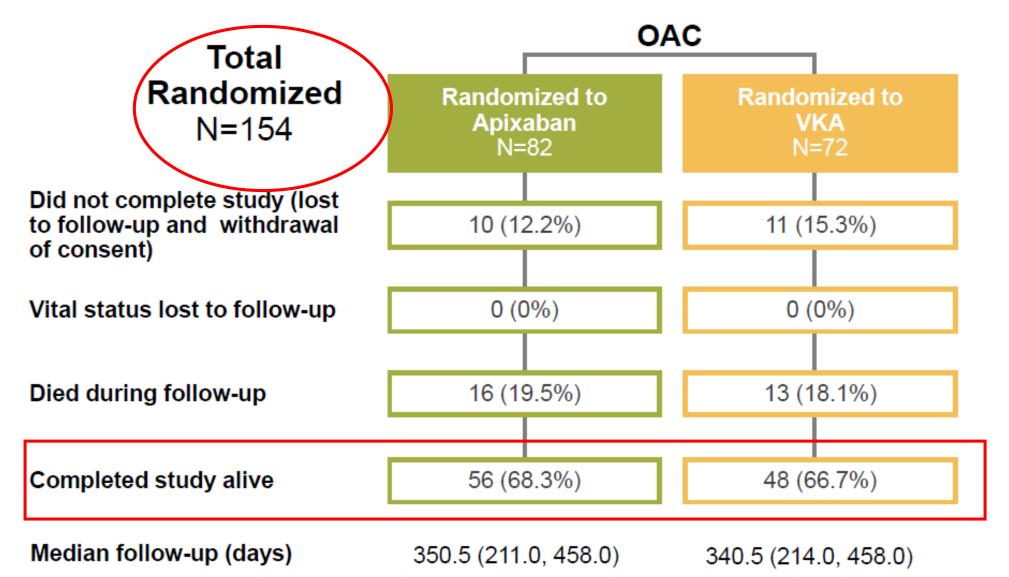
Outcomes Associated With Apixaban Use in Patients With End-Stage Kidney Disease and Atrial Fibrillation in the United States


Outcome	Overall	Apixaban	Warfarin	Hazard Ratio (95% Cl)	P Value
Stroke/systemic embolism					
No. of patients	9404	2351	7053	0.88 (0.69–1.12)	0.29
No. of events	454	81	373		
Event rate per 100 PY	11.9	12.4	11.8		
Major bleeding		,			
No. of patients	9404	2351	7053	0.72 (0.59–0.87)	<0.001
No. of events	844	129	715		
Event rate per 100 PY	22.3	19.7	22.9		
Gastrointestinal bleeding		,			
No. of patients	9404	2351	7053	0.86 (0.72–1.02)	0.09
No. of events	865	155	710		
Event rate per 100 PY	23.4	23.8	23.4		
Intracranial bleeding		,			
No. of patients	9400	2350	7050	0.79 (0.49–1.26)	0.32
No. of events	132	21	111		
Event rate per 100 PY	3.4	3.1	3.5		
Death					
No. of patients	9404	2351	7053	0.85 (0.71–1.01)	0.06
No. of events	912	159	753		
Event rate per 100 PY	24.7	23.7	24.9		

Original Study Design

Open label with blinded event adjudication

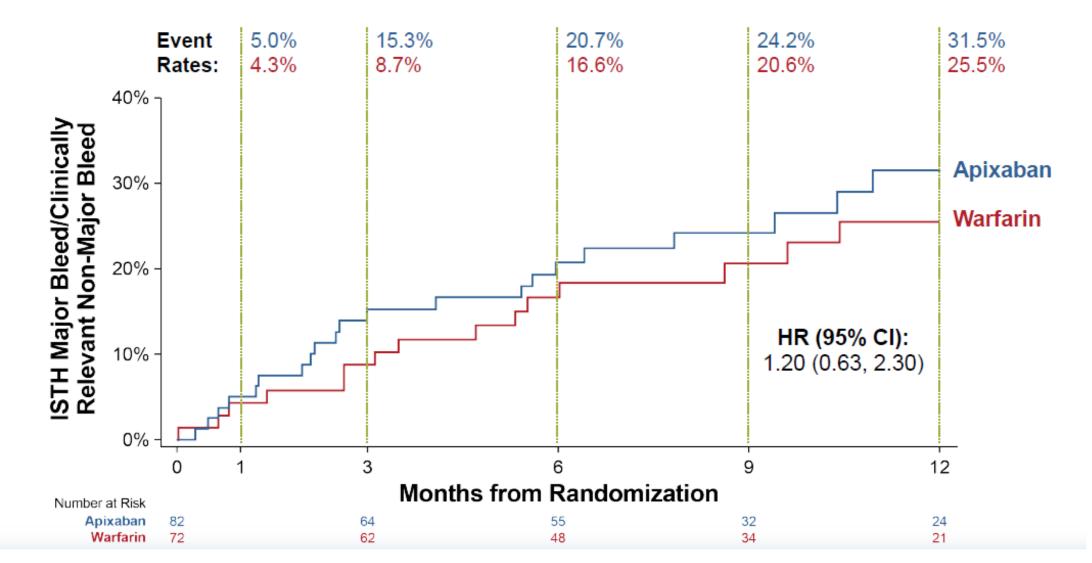
Primary outcome: ISTH major and clinically relevant non-major bleeding


Secondary outcomes:

- PK in patients randomized to apixaban
- Stroke and systemic embolism
- Death
- Tolerability/persistence/adherence parameters

CONSORT Diagram

Patient Baseline Characteristics


	Apixaban (N=82)	Warfarin (N=72)
Age (years), Median	69.0 (61.0, 76.0)	68.0 (60.5, 72.5)
≥ 75 years old	24 (29.3%)	15 (20.8%)
Female	34 (41.5%)	22 (30.6%)
Black	35 (42.7%)	34 (47.2%)
CHA ₂ DS ₂ -VASc, Median (Q1, Q3)	4.0 (3.0, 5.0)	4.0 (3.0, 5.0)
Stroke	17 (20.7%)	12 (16.7%)
Warfarin or NOAC naïve	10 (12.2%)	4 (5.6%)
Type of atrial fibrillation		
Paroxysmal	45 (54.9%)	40 (55.6%)
Persistent/Permanent	37 (45.1%)	32 (44.4%)
Prior clinically relevant or spontaneous bleeding	18 (22.0%)	14 (19.4%)
Bleeding the past year requiring hospitalization	8 (9.8%)	2 (2.8%)
Aspirin	29 (36.7%)	32 (45.7%)

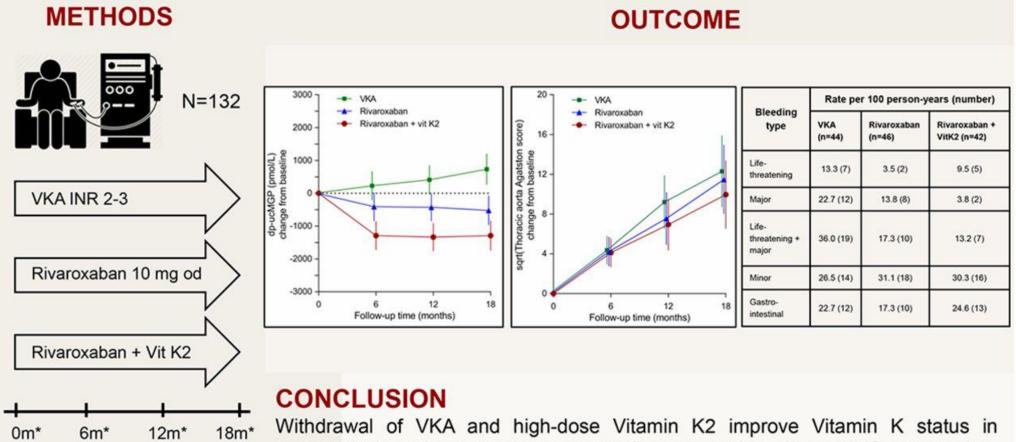
Apixaban and Warfarin Dosing in Modified ITT

Patients randomized to apixaban and received at least one dose	Apixaban N = 77
First apixaban dose	
2.5 mg BID	22 (28.6%)
5.0 mg BID	55 (71.4%)
Apixaban dose reduction from 5.0 mg to 2.5 mg BID	15 (27.3%)
Patients randomized to warfarin and received at least one dose	Warfarin N = 68
Time in therapeutic range (2.0-3.0), Median (Q1, Q3) ¹	44.3% (23.2%, 59.0%)

 Patients were 3 times as likely to be subtherapeutic (INR <2.0) relative to supratherapeutic (>3.0)

Time to Major or Clinically Relevant Non-Major Bleed for Intention to Treat

Primary Safety Endpoint: ITT Analysis


	Apixaban N = 82	Warfarin N = 72
ISTH major bleed/clinically relevant non-major bleed ¹	21 (25.6%)	16 (22.2%)
Intracranial	1 (1.2%)	1 (1.4%)
Gastrointestinal	2 (2.4%)	6 (8.3%)
Hemodialysis access site	11 (13.4%)	6 (8.3%)
ISTH major bleed ¹	7 (8.5%)	7 (9.7%)
Intracranial	1 (1.2%)	1 (1.4%)
Gastrointestinal	2 (2.4%)	5 (6.9%)
Hemodialysis access site	1 (1.2%)	0 (0.0%)
ISTH clinically relevant non-major bleed ¹	14 (17.1)	9 (12.5%)
Gastrointestinal	0 (0.0%)	1 (2.8%)
Hemodialysis access site	10 (12.2%)	6 (8.3%)

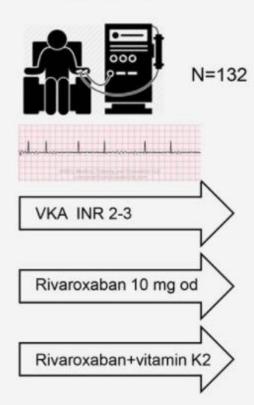
1 Per protocol, heparin during dialysis was minimized

Secondary Endpoints

	Apixaban N = 82	Warfarin N = 72
Stroke	2 (2.4%)	2 (2.8%)
Ischemic	1 (1.2%)	2 (2.8%)
Hemorrhagic	1 (1.2%)	0 (0.0%)
Systemic embolism	0 (0.0%)	0 (0.0%)
Death	21 (25.6%)	13 (18.1%)
Cardiovascular	9 (11.0%)	4 (5.6%)
Non-cardiovascular	5 (6.1%)	8 (11.1%)
Undetermined	7 (8.5%)	1 (1.4%)
Bleeding related death	1 (1.2%)	0 (0%)

 Analyses of pharmacokinetic (PK) data from 50 patients randomized to apixaban are ongoing Multicenter RCT of vitamin K antagonist replacement by rivaroxaban with or without vitamin K2 in hemodialysis patients with atrial fibrillation: the Valkyrie study

*VitK status, PWV and CAC score

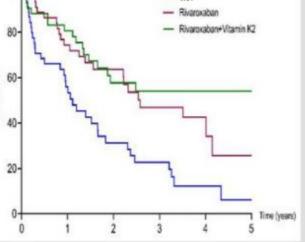

Withdrawal of VKA and high-dose Vitamin K2 improve Vitamin K status in hemodialysis patients, but have no significant favorable effect on VC progression. Severe bleeding complications may be lower with rivaroxaban than with VKA.

Safety and efficacy of vitamin K antagonists versus rivaroxaban in hemodialysis patients with atrial fibrillation: a multicenter RCT

METHODS

OUTCOME 100 Primary efficacy end point: 80 HR for composite of fatal and non-fatal stroke, cardiac events and other vascular events (95% CI, P-value vs VKA): 60 • Rivaroxaban: 0.41 (0.25-0.68, P=0.0006) 40 • Rivaroxaban+vitamin K2: 0.34 (0.19-0.61, P=0.0003) 20

Safety end point:

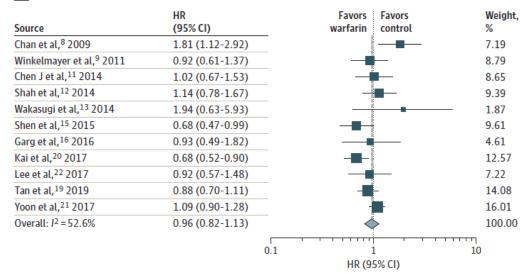

Outcome parameter	VKA (n=44)	Rivarox (n=46)	Rivarox + vit K2 (n=42)	PCox-adj
life-threatening or major bleeding	17 (30)	8 (11)	9 (12)	P=0.048
Ainor bleeding	13 (19)	16 (27)	16 (22)	P=0.639
Gastrointestinal bleeding	12 (23)	9 (16)	13 (19)	P=0.478

number of patients with at least one bleeding episode (total number bleeding episodes)

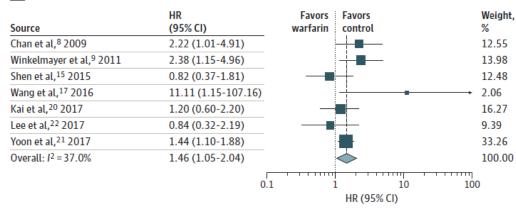
Conclusion

In hemodialysis patients with AF, rivaroxaban reduced the composite of fatal and nonfatal cardiovascular events and major bleeding complications in comparison to VKA.

doi: 10.1681/ASN.2020111566


2. Do we have solid evidence for the efficacy and safety of OAC in ESRD patients with AF?

Original Investigation | Cardiology


Association Between Use of Warfarin for Atrial Fibrillation and Outcomes Among Patients With End-Stage Renal Disease A Systematic Review and Meta-analysis

Mandeep S. Randhawa, MD; Rohanlal Vishwanath, BSc; Manoj P. Rai, MD; Ling Wang, PhD; Amritpal K. Randhawa, MD; George Abela, MD; Gaurav Dhar, MD

A Ischemic stroke

B Hemorrhagic stroke

A Major bleeding

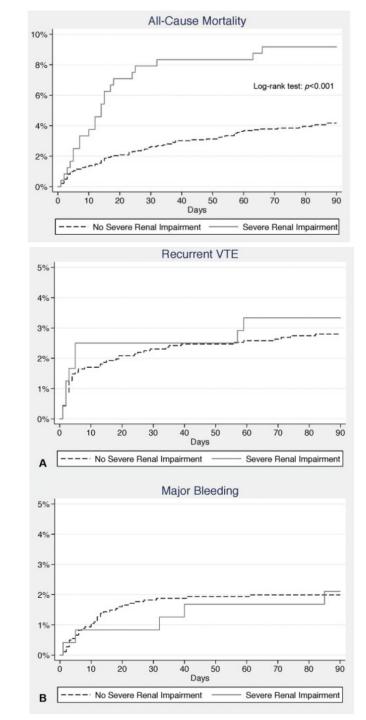
Source	HR (95% CI)	Favors Favors warfarin control	Weight, %
Winkelmayer et al, ⁹ 2011	0.96 (0.70-1.31)		14.60
Carrero et al, ¹⁰ 2014	0.52 (0.16-1.65)		2.62
Shah et al, ¹² 2014	1.41 (1.09-1.81)		16.64
Wakasugi et al, ¹³ 2014	0.85 (0.19-3.64)		1.71
Shen et al, ¹⁵ 2015	1.00 (0.69-1.44)		12.87
Garg et al, ¹⁶ 2016	1.53 (0.94-2.51)	÷+ 	9.63
Wang et al, ¹⁷ 2016	3.26 (1.13-9.40)		3.11
Kai et al, ²⁰ 2017	0.97 (0.77-1.20)		17.74
Tan et al, ¹⁹ 2019	1.48 (1.32-1.66)		21.08
Overall: 1 ² = 66.0%	1.20 (0.99-1.47)		100.00
	0.1		10
		HR (95% CI)	

B Mortality

Source	HR (95% CI)	Favors Favors warfarin control	Weight, %
Winkelmayer et al, ⁹ 2011	1.06 (0.90-1.24)	-	12.65
Genovesi et al, ¹⁴ 2015	0.91 (0.56-1.48)		5.08
Wakasugi et al, ¹³ 2014	1.00 (0.40-2.52)		1.86
Shen et al, ¹⁵ 2015	1.01 (0.92-1.11)		14.36
Garg et al, ¹⁶ 2016	1.03 (0.91-1.15)		13.82
Kai et al, ²⁰ 2017	0.76 (0.69-0.84)		14.26
Lee et al, ²² 2017	1.04 (0.88-1.23)		12.44
Tan et al, ¹⁹ 2019	0.72 (0.65-0.80)		14.14
Voskamp et al, ²³ 2018	1.20 (1.00-1.50)		11.40
Overall: / ² = 85.3%	0.95 (0.83-1.09)		100.00
	0.1		10

HR (95% CI)

Secondary Endpoints


	Apixaban N = 82	Warfarin N = 72
Stroke	2 (2.4%)	2 (2.8%)
Ischemic	1 (1.2%)	2 (2.8%)
Hemorrhagic	1 (1.2%)	0 (0.0%)
Systemic embolism	0 (0.0%)	0 (0.0%)
Death	21 (25.6%)	13 (18.1%)
Cardiovascular	9 (11.0%)	4 (5.6%)
Non-cardiovascular	5 (6.1%)	8 (11.1%)
Undetermined	7 (8.5%)	1 (1.4%)
Bleeding related death	1 (1.2%)	0 (0%)

 Analyses of pharmacokinetic (PK) data from 50 patients randomized to apixaban are ongoing

Venous Thromboembolism and Renal Impairment: Insights from the SWIss Venous ThromboEmbolism Registry (SWIVTER)

David Spirk, MD¹ Tim Sebastian, MD² Martin Banyai, MD² Jürg H. Beer, MD³ Lucia Mazzolai, MD⁴ Thomas Baldi, MD⁵ Drahomir Aujesky, MD, MSc⁶ Daniel Hayoz, MD⁷ Rolf P. Engelberger, MD⁷ Thomas Kaeslin, MD⁸ Wolfgang Korte, MD⁹ Robert Escher, MD¹⁰ Marc Husmann, MD² Annette Mollet, PhD¹¹ Thomas D. Szucs, MD¹¹ Nils Kucher, MD²

	No sever $N = 1,82$		Severe $R = 240$		HR	95% CI	P ^a
Mortality, n (%)	76	4.2	22	9.2	2.27	1.41-3.65	0.001
VTE related, n (%)	20	1.1	4	1.7	1.54	0.53-4.50	0.43
Bleeding related, n (%)	3	0.2	2	0.8	5.25	0.88-31.42	0.07
Nonfatal recurrent VTE, n (%)	31	1.7	4	1.7	0.98	0.35-2.77	0.97
Nonfatal recurrent PE, ^b n (%)	20	1.1	4	1.7	1.52	0.52-4.45	0.44
Nonfatal recurrent DVT, ^b n (%)	18	1.0	3	1.2	1.27	0.37-4.31	0.70
Nonfatal major bleeding, n (%)	33	1.8	3	1.3	0.69	0.21-2.25	0.53
Nonfatal bleeding requiring medical attention, <i>n</i> (%)	64	3.6	9	3.8	1.06	0.53-2.14	0.86
Recurrent VTE, n (%)	51	2.8	8	3.3	1.19	0.57-2.52	0.64
Major bleeding, n (%)	36	2.0	5	2.1	1.05	0.41-2.68	0.92
Bleeding requiring medical attention, n (%)	67	3.7	11	4.6	1.24	0.66-2.35	0.50

